
4.4 Numerical Integration

Problems Worksheet

- 1. Consider the definite integral $\int_0^1 e^x dx$ approximated with four slices.
 - a. Estimate this definite integral using the trapezoidal rule.

b. Estimate this definite integral using Simpson's rule.

c. Using integration techniques, evaluate $\int_0^1 e^x dx$ exactly.

- 2. Consider the definite integral $\int_0^{\pi} \sin x \, dx$ approximated with eight slices.
 - a. Estimate this definite integral using the trapezoidal rule.

b. Estimate this definite integral using Simpson's rule.

c. Using integration techniques, evaluate $\int_0^{\pi} \sin x \, dx$ exactly.

- 3. Without calculation, comment on the accuracy or validity of the following approximations.
 - a. $\int_0^1 -x^2 dx$ using four slices with the trapezoidal rule.
 - b. $\int_{-7}^{-6} -x^2 dx$ using four slices with the trapezoidal rule.
 - c. $\int_{3}^{4} (2x + 1) dx$ using four slices with the trapezoidal rule.
 - d. $\int_{3}^{4} (2x + 1) dx$ using four slices with Simpson's rule.
 - e. $\int_{3}^{4} (2x + 1) dx$ using five slices the trapezoidal rule.
 - f. $\int_{3}^{4} (2x+1) dx$ using five slices with Simpson's rule.
- 4. An impossible integration. Use the trapezium rule with 4 slices to estimate the value of $\int_0^1 e^{-x^2} dx$.